

BIMV with SNB-type adaptor

- ■Flat spray pneumatic nozzle producing fine atomization with a mean droplet diameter of 100 µm or less.*1
- ■Features large turn-down ratio under liquid pressures of 0.1–0.3 MPa.
- ■Spray angle of 110°, 80°, or 45°.
- ■Produces two different spray distributions: uniform spray distribution throughout spray pattern area (when spraying at a low air-water ratio), or a mountain-shaped distribution having gradually tapered edges (at a high air-water ratio).
 - *1) Droplet diameter measured by laser Doppler method

APPLICATIONS

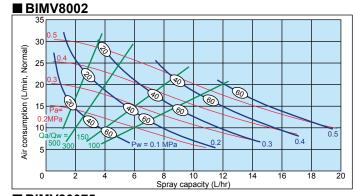
- ■Spraying: Mold release agent, lubricant, deodorant, oil, surface treatment agent, rust preventive, honey, insecticide, aqueous urea
- ■Cooling: Dies, gas, glass, steel plates, steel pieces, moldings, automobile bodies, plastic products
- ■Moisture control: Paper, flue gas, ceramics, concrete
- ■Cleaning: Printed circuit boards, glass tubes

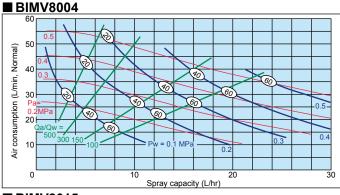
STRUCTURE

- ■Comprising four parts: Nozzle tip, core, cap, and adaptor.
- See pages 26 and 27 for details of adaptors.
- ■Materials: S303 (Optional material: S316L)

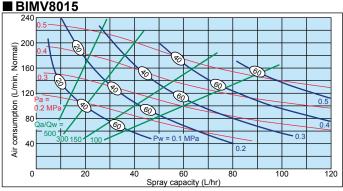
Adaptors other than T and N types include the parts made of FKM, NBR, and PTFE.

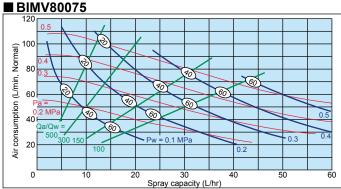
DIMENSIONS

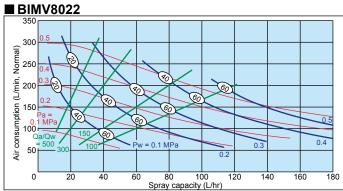

■See pages 26 and 27 for dimensions and pipe connection sizes of BIM series.

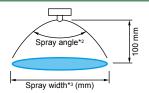

ACCESSORIES

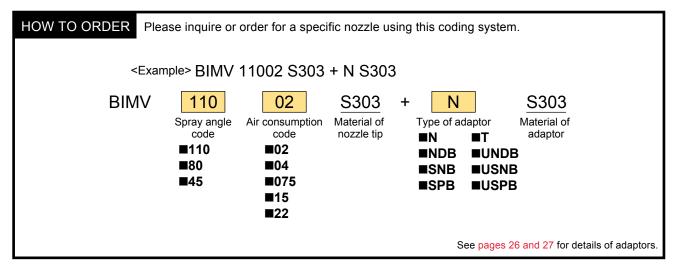
■Mounting bracket is available as an option. See page 29.


FLOW-RATE DIAGRAMS

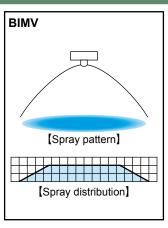

- ■How to read the chart
- 1. The spray capacity shown is for one nozzle.
- 2. Red lines (—) represent compressed air pressures Pa in MPa. Blue lines (—) represent liquid pressures Pw in MPa. Green lines (—) represent air-water ratio Qa/Qw.
- 3. Figures in ovals O indicate Sauter mean diameters (µm) measured by laser Doppler method.
- 4. These flow-rate diagrams are applicable to adaptors type T and N only.
- 5. Flow-rate diagrams for spray angle code of 110 and 45 are available on request.

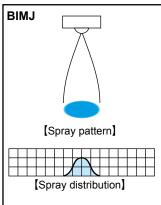




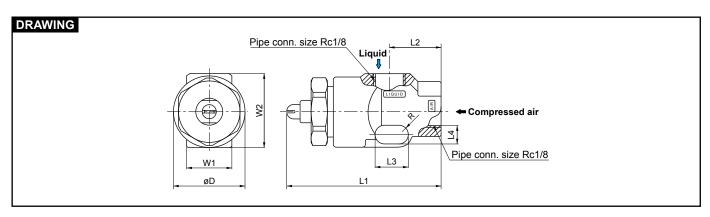


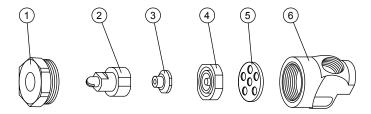
PERFORMANCE DATA


Spray	Air	Air	S	pray	capacit	•			•	(L/min	, Normal)	1	Spr	ay wid	th*³	Mean droplet	1	ee passage meter (mm)			
angle	consumption			_			id pres		,	\				. ,		dia. (µm) Laser		`			
code *2	code	(MPa)	0.		0.1		0.		0.2		0.			press	<u> </u>	Doppler	Tip	Ada			
			Liquid	Air	Liquid	Air	Liquid	Air	Liquid	Air	Liquid	Air	0.1	0.15	0.25	method	orifice	Liquid	Air		
	02	0.2 0.3	2.2 1.0	14 20	5.3 2.5	11 19	<u> </u>	— 17	— 8.3	— 12	14.3		280 220	340 250	— 420	20-	0.2	0.9	0.7		
	02	0.3	-	_	1.4	25	2.3	24	4.0	23	6.3	20		230	340	100	0.2	0.9	0.7		
	0.4	0.2	4.5	25	9.5	20	17.0	13		_	_	_	300	360	_	20-					
	04	0.3 0.4	2.0	36	4.7 2.8	35 45	8.5 4.8	31 44	13.1 7.7	27 41	19.6 11.4	20 37	230	270 250	430 350	100	0.3	0.9	0.9		
		0.2	8.7	51	18.4	42	33.3	29	_	_	_	_	320	380	_	20-					
110	075	0.3 0.4	4.0	74	8.8 5.6	71 91	15.5 9.1	64 89	24.3 14.8	54 82	38.5 21.8	40 74	240	300 270	450 370	100	0.5	1.2	1.4		
		0.4	16.8	107	34.8	90	64.4	60	<u>14.0</u>	<u>02</u>	<u> </u>	<u> 74</u>	340	400	- 370 						
	15	0.3	8.0	150		144		130		108	74.5	87	270	320	470	20- 100	0.8	1.8	1.9		
		0.4	22.3	140		190 116	18.3 92.1	183 77	29.1	172	42.9	154	350	280 420	380						
	22	0.2	11.5			189		169	68.5	138	107	103	280	330	490	20- 100	0.9	2.1	2.2		
		0.4	_			245	24.5	238	39.1	220	57.7	198	_	300	400	100					
	02	0.2 0.3	2.2 1.0	14 20	5.3 2.5	11 19	4.6	 17	8.3	<u> </u>	14.3	7	200 170	260 210	300	20-	0.3	0.9	0.7		
		0.4		_	1.4	25	2.3	24	4.0	23	6.3	20	_	200	250	100	0.0	0.0			
	04	0.2	4.5 2.0	25 36	9.5 4.7	20	17.0 8.5	13 31	<u> </u>	— 27	19.6	 20	200	260	210	20-	0.4	0.9	0.0		
	04	0.3 0.4		_	2.8	35 45	4.8	44	13.1 7.7	27 41	11.4	37	170	210 200	310 260	100	0.4	0.9	0.9		
		0.2	8.7	51	18.4	42	33.3	29	_	_	_	_	200	270	_	20-					
80	075	0.3 0.4	4.0	74	8.8 5.6	71 91	15.5 9.1	64 89	24.3 14.8	54 82	38.5 21.8	40 74	170	210 200	310 260	100	0.6	1.2	1.4		
		0.4	16.8	107	34.8	90	64.4	60	-	_	_		210	280	_	20-					
	15	0.3	8.0	150		144		130		108	74.5	87	180	220	320	100	0.9	1.8	1.9		
		0.4	22.3	140		<u>190</u> 116	18.3 92.1	183 77	29.1	172 —	42.9	154	210	200 280	270 —						
	22	0.3	11.5		23.9		41.3	169		138	107	103	180	220	330	20- 100	1.1	2.1	2.2		
		0.4	2.2	14	15.3 5.3	245 11	24.5	238	39.1	220	57.7	198	100	210 130	280	100					
	02	0.2	1.0	20	2.5	19	4.6	<u> </u>	8.3	12	14.3	7	80	110	— 150	20-	0.4	0.9	0.7		
		0.4	_		1.4	25	2.3	24	4.0	23	6.3	20	_	100	130	100					
	04	0.2 0.3	4.5 2.0	25 36	9.5 4.7	20 35	17.0 8.5	13 31	— 13.1	<u> </u>	19.6	 20	100 80	130 110	— 150	20-	0.5	0.9	0.9		
	04	0.3	_	_	2.8	45	4.8	44	7.7	41	11.4	37	_	100	130	100	0.5	0.9	0.9		
4-	075	0.2	8.7	51	18.4	42	33.3	29	_			_	100	140	_	20-		4.0			
45	075	0.3 0.4	4.0	74	8.8 5.6	71 91	15.5 9.1	64 89	24.3 14.8	54 82	38.5 21.8	40 74	80	110 100	160 140	100	0.9	1.2	1.4		
		0.2		107	34.8	90	64.4	60	_	_	_	_	110	150		20-					
	15	0.3	8.0	150		144		130		108	74.5	87 154	90	120	170	100	1.2	1.8	1.9		
		0.4	22.3	140	11.2 45.6	116	18.3 92.1	77	29.1 —	172 —	42.9	154 —	110	110 160	150 —	00					
	22	0.3	11.5		23.9	189	41.3	169		138	107	103	90	120	180	20- 100	1.6	2.1	2.2		
		0.4	_	_	15.3	245	24.5	238	39.1	220	57.7	198	_	110	150	100					


^{*2)} Spray angle measured at compressed air pressure of 0.3 MPa and liquid pressure of 0.1 MPa. *3) Measured at 100 mm from nozzle.

BIM-PP




- ■Excellent chemical resistance with polypropylene construction.
- ■Two types, BIMV (flat spray pattern) and BIMJ (full cone spray pattern) are available.
- Liquid pressure type with approx. 0.1 to 0.3 MPa.

APPLICATIONS

- ■Spraying: Deodorant, germicide, disinfectant
- ■Moisture control: Paper, textile, printing
- ■Cleaning: Printed circuit boards, electrical components

STRUCTURE

■COMPONENTS AND MATERIALS

No.	Components	Standard materials
1	Сар	PP
2	Nozzle tip	PP
3	Core	PP
4	Orifice disc	PP
5	Packing	PTFE
6	Adaptor	PP

DIMENSIONS

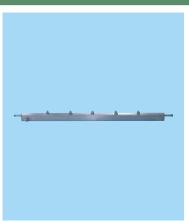
Spray pattern type	Nozzle code	Dimensions (mm)												
	Nozzie code	L1	L2	L3	L4	W1	W2	øD	R	(g)				
Flat spray	BIMV80075	47.5	16	10	E	14	22	22	2.5	10				
Full cone spray	BIMJ2004	46.7	16	10	5	14	23	22	2.5	10				

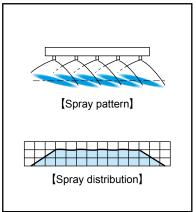
PERFORMANCE DATA

BIMV80075 (Flat spray): See pages 13 and 14 for spray performance details of BIMV80075. BIMJ2004 (Full cone spray): See pages 21 and 22 for spray performance details of BIMJ2004.

HOW TO ORDER

Please inquire or order for a specific nozzle using these product codes.

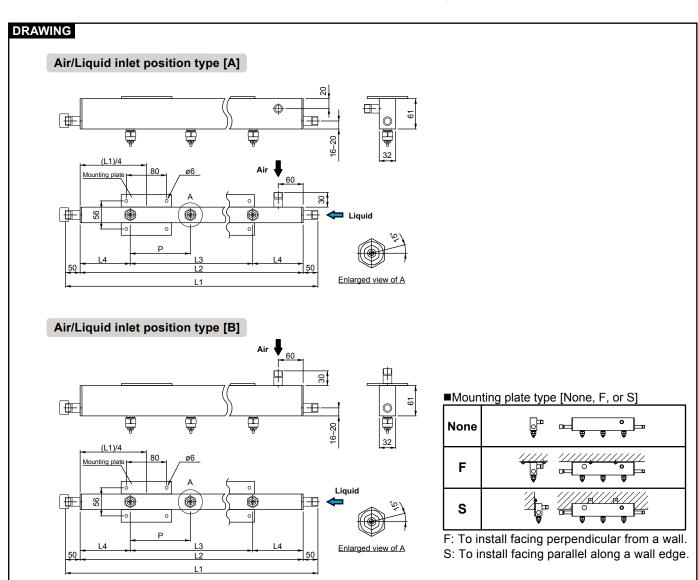

Flat spray type


BIMV 80075 PP + TPP-IN

BIMJ 2004 PP + TPP-IN

Integrated Spray Header with BIM Fine Fog Nozzles

BIM Header


- ■Spray header equipped with BIMV series nozzles (liquid pressure type) producing fine atomization with a mean droplet diameter of 100 µm or less.*1
- ■Combines two pipes for air and water into one rectangular spray header. Compact and easy to install and maintain.
- ■Provides a uniform spray distribution across the entire spray area.
- *1) Droplet diameter measured by laser Doppler method

APPLICATIONS

- ■Spraying: Oil, surface treatment agent
- ■Cooling: Moldings, steel plates, glass plates, plastic

film

■Cleaning: Printed circuit boards

DIMENSIONS

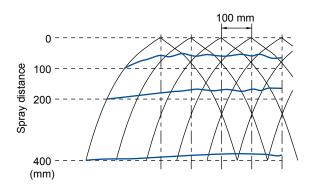
Heade	er code	NI.	Nozzle	0				Pipe conn	ection size	•					
Header	Total	Nozzle spacing	quantity	•	cing m)			Nozzle	e code			Material			
length	length		(Number of BIM nozzles	•	,	BIMV	11002	BIMV	11004	BIMV1	10075				
L2 (mm)	L1 (mm)	P (mm)	equipped)	L3	L4	Air	Liquid	Air	Liquid	Air	Liquid	Nozzle	Header		
1.000	1.100	100 10		900	50	R3/8	R1/4	R3/8	R1/4	R1/2	R3/8				
1,000	1,100	200	5	800	100	K3/6	K 1/4	K3/0	K 1/4	R3/8	R1/4	S303	S304		
2.000	0 2 100	100	20	1,900	50	R1/2	R3/8	R1/2	R3/8	R3/4	R1/2	3303	3304		
2,000	2,000 2,100		10	1,800	100	R3/8	R1/4	R3/8	R1/4	R1/2	R3/8				

PERFORMANCE DATA

Nozzle code	Nozzle quantity	Air pressure (MPa)	Air consumption (L/min, Normal)	Spray capacity (L/hr) at liquid pressure of 0.1 MPa
	5		100	5.0
BIMV11002	10	0.3	200	10.0
	20		400	20.0
	5		180	10.0
BIMV11004	10	0.3	360	20.0
	20		720	40.0
	5		370	20.0
BIMV110075	10	0.3	740	40.0
	20		1,480	80.0

Note: Total air consumption and spray capacities shown in the above table are calculated from the number of nozzles used, based on each air consumption and spray capacity described on page 14.

SPRAY DISTRIBUTION

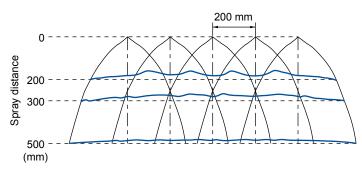

■ BIMV11004S303

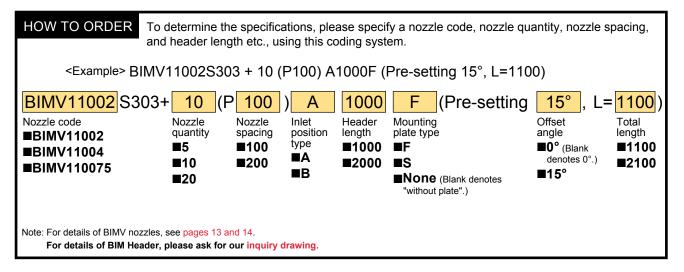
Nozzle spacing: 100 mm

Compressed air pressure: 0.3 MPa

Liquid pressure: 0.1 MPa

Offset angle (nozzle tip angle to axis of header): 15°

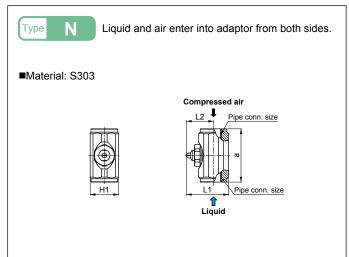

■ BIMV11004S303

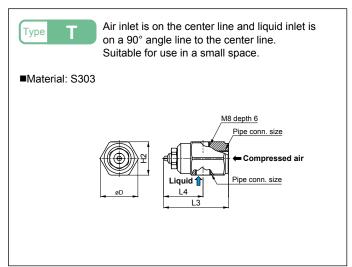

Nozzle spacing: 200 mm

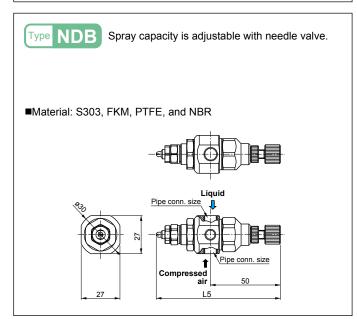
Compressed air pressure: 0.3 MPa

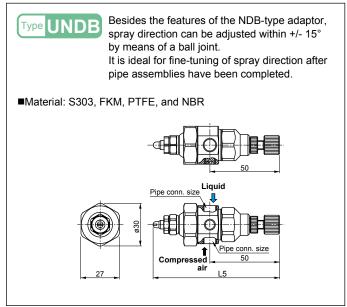
Liquid pressure: 0.1 MPa

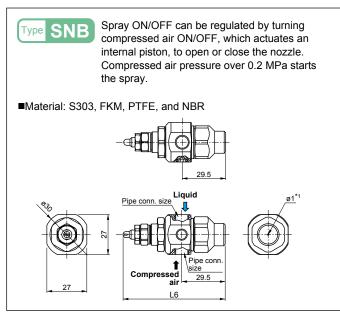
Offset angle (nozzle tip angle to axis of header): 15°

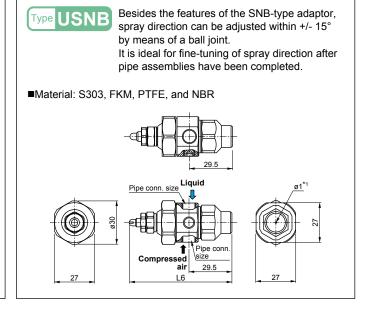

Adaptors for BIM series Fine Fog Nozzles

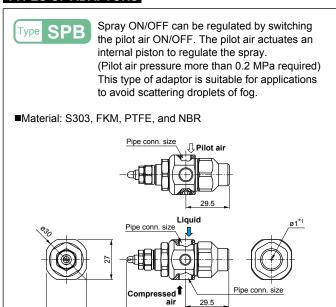

The following eight types of adaptors are available for BIM series Low Flow Rate Fine Fog Nozzles: BIMV, BIMV-S, BIMK, BIMK-S, and BIMJ, which are introduced on pages 13 to 22.

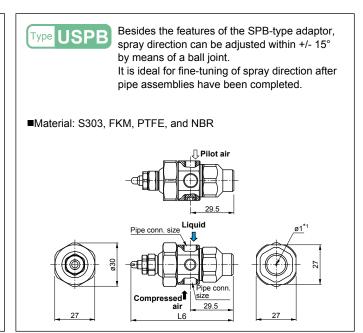

See page 27 for dimensions and pipe connection sizes of each adaptor.


Drawings with parts list (each description and material) are available upon request.

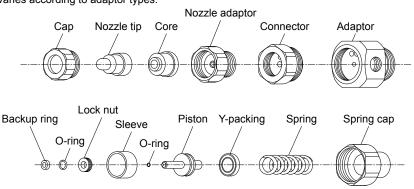

TYPES OF ADAPTORS







^{*1)} Hole ø1 is for air relief.


TYPES OF ADAPTORS

STRUCTURE OF SPB ADAPTOR

This exploded view shows a structure of SPB adaptor as an example. Structure and components varies according to adaptor types.

CAUTIONS for NDB, UNDB, SNB, USNB, SPB, and USPB adaptors

Thin-walled nozzle adaptor tends to deform easily if installed directly by itself.

First assemble <u>Core</u>, <u>Nozzle tip</u>, <u>Cap</u> and <u>Nozzle adaptor</u> by hand with light pressure, then attach them to <u>Connector</u> (or <u>UT Ball</u>). Use a well-fitting hexagon socket wrench instead of a regular spanner (wrench), as a spanner may deform the unit.

PIPE CONNECTION SIZES AND MASS

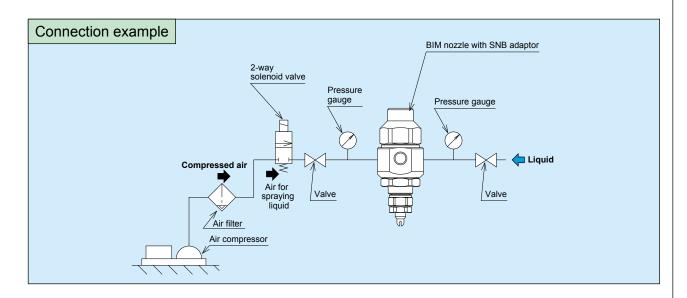
A -1 1	Air	Pipe cor	nection s	izes	N4
Adaptor type	consumption code	Compressed air	Liquid	Pilot air	Mass (g)
N	02, 04, 075	Rc1/8	Rc1/8		55
IN	15, 22	Rc1/4	Rc1/4		130
Т	02, 04, 075	Rc1/8	Rc1/8		80
ı	15, 22	Rc1/4	Rc1/4		210
NDB	02, 04, 075	Rc1/8	Rc1/8		172
UNDB	15, 22	RC 1/6	RC1/6		193
SNB	02, 04, 075	Do1/0	Rc1/8		151
USNB	15, 22	Rc1/8	RC1/8		172
SPB	02, 04, 075	Rc1/8	Rc1/8	Rc1/8	146
USPB	15, 22	KC1/6	RC1/6	RC1/6	167

DIMENSIONS

Air				Din	nensio	ons (m	nm)			
consumption code	L1	L2	L3	L4	L5	L6	а	H1	H2	øD
02	25.3	16.3	40.8	24.8	87.3	66.8	32	17	21	23.5
04	26.8	17.8	42.3	26.3	88.8	68.3	32	17	21	23.5
075	28.1	19.1	43.6	27.6	90.1	69.6	32	17	21	23.5
15	39.1	26.6	60.1	38.1	97.6	77.1	43	23	29	32.5
22	41.3	28.8	62.3	40.3	99.8	79.3	43	23	29	32.5

^{*1)} Hole ø1 is for air relief.

How to Use Spray ON/OFF Control Adaptors

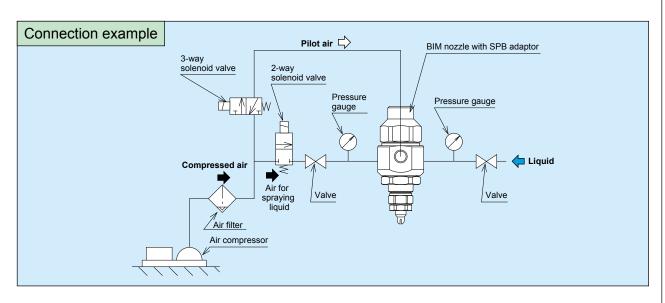

■SNB adaptor (CSN, SN adaptors)

Spray ON/OFF can be regulated by turning compressed air ON/OFF.

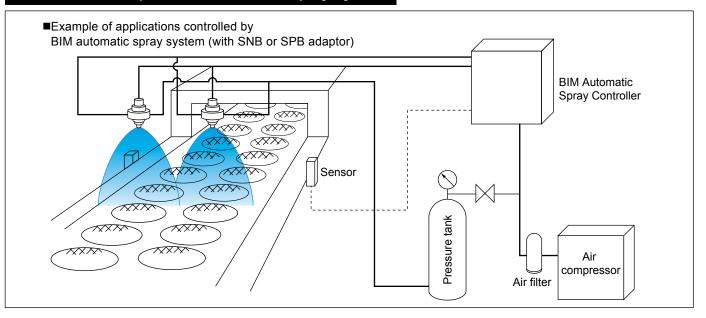
Compressed air pressure must be 0.2 MPa or higher in order to start the spray.

Adaptor types **CSN** (see page 30) and **SN** (page 35) are used in the same way.

	Function chart														
Compressed air	OFF	ON	OFF	ON	OFF										
Liquid	Stop	Spray	Stop	Spray	Stop										


■SPB adaptor (CSP, SP adaptors)

Spray ON/OFF can be regulated by switching the pilot air ON/OFF.


The pilot air actuates an internal piston to regulate the spray. (Pilot air pressure must be 0.2 MPa or higher.) As even low pressure atomizing air can be used, production of a range of fine to coarse fog is possible. Best-suited for when there is concern about scattering droplets.

Adaptor types **CSP** (see page 30) and **SP** (page 35) are used in the same way.

Function chart														
Compressed			ON											
air Pilot air	OFF	ON	OFF	ON	OFF									
Liquid	Stop	Spray	Stop	Spray	Stop									

Installation Example of BIM Automatic Spray System

Optional/ Related Products

■Mounting Bracket (product code: MBW)

Mounting bracket enables easy fixing of a nozzle on a pole (metal rod) with desired spray direction.

Available in two size for pipe diameters of 8 mm or 10 mm.

Available for the adaptor types T, NDB, UNDB, SNB, USNB, SPB, and USPB (not available for N-type adaptor).

■Spray Gun Unit with BIM nozzles: BIM-GUN

Liquid siphon type with 250 ml bottle.* Air capacity adjustability (as standard equipment).

Suitable for chemical spraying, etc.

*500 ml bottle is available as an option.

Pressure gauge kit including pressure reducing valve and two couplers.

Note: When using BIM**04S types, this item is necessary.

Max. operating pressure: 0.5 MPa Structure: 1) BIM nozzle, 2) Air duster gun, 3) Plastic bottle
Materials: S303, S304, PP, PE, etc.
Liquid contacting parts: PE (bottle) and Stainless steel 303 (nozzle)
Some kinds of chemical may not be suitable for use.

HOW TO ORDER

Please inquire or order for a specific BIM-GUN using these product codes.

(Flat spray) BIMV series

BIMV8004SS303+TS303 siphon spray unit (w/ 250 ml bottle) BIMV80075SS303+TS303 siphon spray unit (w/ 250 ml bottle)

(Hollow cone spray) BIMK series

BIMK6004SS303+TS303 siphon spray unit (w/ 250 ml bottle) BIMK60075SS303+TS303 siphon spray unit (w/ 250 ml bottle)

Approx. spray capacity (for your reference)

●BIMV8004S/BIMK6004S: 30 ml/min ●BIMV80075S/BIMK60075S: 60 ml/min

BIM series Nozzle Tip Interchangeability

List of Nozzle Tip Interchangeability

Nozzle tips with \bigcirc are interchangeable with each other to change spray angle and spray pattern.

BIM series

														L	iquic	d pre	ssure	e typ	е												Lic	quid s	sipho	on typ	эе
										ВΙΜν	′								BI	ИΚ						BIMJ					В	IMV-	S	ВІМ	K-S
			<u> </u>	11004	110075	11015	11022		8004	80075	8015	8022		4504	45075	4515	4522	6004	60075	6015	6022	7004	70075	7015	7022		2004	20075	2015	2022	8002S	8004S	80075S	6004S	60075S
		11002 11004 110075					-	O - -	0	_ _ O			O - -	0	0		<u> </u>	_ O _	_ _ O			_ O _	_ _ O			O — —	_ O _	_ _ O		; — ; — ; —		;	- - - -		
		11015 11022 8002		<u> </u>				=		<u> </u>	0	0		<u></u>	-	0	0	-=-	_ _	0	0	-=-	_ _	0	<u> </u>		- <u>-</u> -		<u>0</u>	0		_	-=-		=
	BIMV	8004 80075		0	_ _ O	 							<u> 0</u> - -	0	0		 	0	_ _ O			0	_ _ O			<u>0</u> <u>-</u> -	0	0					- <u></u> -		- -
		8015 8022	_	[— [—		0	0	_		-	_			— —	-	0	0	==:	_ _	0 –	0	-=-	— —	0	_ O	_	=	-	0	0		- ¦	=	<u>-</u>	=
e type		4502 4504 45075	<u> </u>	0	0	; <u> </u>	-	<u>0</u> - -	0	_ _ O						-=-	;	0	_ _ O			0	_ _ O		-=-	O — —	0	0		; — ; —	-= ;	_ _ _	- <u>-</u> -		
Liquid pressure type		4515 4522	<u> </u>	_		0	0	<u>-</u>	_	-	0	0	<u> </u>	_	[— <u> </u>					0 –	0	<u> </u>	_	0	_ O	<u> </u>		-	0 –	_ O	-	_ _		<u>-</u>	
Liquid	BIMK	6004 60075 6015 6022			0	0			0	0	_ _ O				0	_ _ O		 			(1111	0 - -	_ O _	_ _ O			<u> </u>	0	_ _ O			_	- - - - -		
		7004	=	0		 -	-	=	0		_	-	=	0				0	_	_	-		_			=	0	 	_	<u> </u>		_		_	Ξ
		70075 7015 7022			<u> </u>	0	_ _ _			<u> </u>	0	0	- <u></u> -		0	0		 	O -	0	 	-		_			- <u>-</u> -	0	0		-= ;		- <u>-</u> -		
	BIMJ	2002 2004 20075	0 - -	0	_ _ 0		-	0 -	_ O _	_ _ O			0 -	_ O _	_ _ 0			_ O _	– – 0			_ 0 _	_ _ O									-		_ _ _	=
type	DIMAY O	2015 2022 8002S		;	-=-	0	0	=	-=-		- -	0	- = -			<u>-</u>	0	-=-	_	<u>-</u>	0	- = -		0 - -	_ O 	- = -	- <u>-</u> -	 	- <u>-</u>				- <u>=</u> -	_ _ _	
Liquid siphon type	BIMV-S	80075S	_	 		 	-	=			_	==	=	 	 		==	-=-		-=-		-=-		=		=	-=-	=		 	-=-		<u></u>	0	0
Liquic	BIMK-S	6004S 60075S	=	 - -	 	; = -	-	=		=	=	 	- = -	=	 -		<u> </u>	-=-	=			-=-		==-		=	-=-	<u> </u>		==	-=-	0	0		<u>-</u>